- 1 Hadrons can be classified into mesons and baryons. Which of the following statements is true?
 - A Mesons always consist of three quarks.
 - **B** Mesons always include a quark and an antiquark.
 - C Mesons are formed during beta decay.
 - **D** Neutrons and protons are examples of mesons.

(Total for Question = 1 mark)

2 The table shows the charge on some quarks.

Quark	Charge / e
u	+ 2/
d	- 1/

Which of the following is a possible quark composition of a π - particle?

- A dd
- 🖾 B uu
- 🖾 C dū
- 🖾 D du

(Total for Question = 1 mark)

3 The Large Hadron Collider is designed to accelerate protons to very high energies for particle physics experiments.

Very high energies are required to

- A annihilate protons and antiprotons.
- **B** allow protons to collide with other protons.
- \square C create particles with large mass.
- \square **D** to produce individual quarks.

(Total for Question = 1 mark)

4 A muon has a mass of 106 MeV/c^2 .

The mass of a muon, to two significant figures, is

- \square A 1.7×10^{-11} kg
- **B** 5.7 × 10⁻²⁰ kg
- \Box C 1.9 × 10⁻²⁸ kg
- **D** 1.9×10^{-34} kg

(Total for Question = 1 mark)

- 5 A pion can decay to produce two leptons. Which one of the following is possible?
 - $\square \qquad \mathbf{A} \quad \pi^+ \to \mathbf{e}^+ + v_{\mathbf{e}}$
 - $\square \qquad \mathbf{B} \quad \pi^0 \to \mathbf{e} \ + v_{\mathbf{e}}$
 - $\square \qquad \mathbf{C} \quad \pi^+ \to \mathbf{e}^+ + \mathbf{e}$
 - $\square \quad \mathbf{D} \quad \pi^0 \to \pi^+ + \mathbf{e}$

(Total for Question 1 mark)

- 6 The mass in MeV/ c^2 of a 1.8×10^{-29} kg positron is
 - A
 10

 B
 3.2×10^{-59}

 C
 3.3×10^{-8}

 D
 1.0×10^7

(Total for Question = 1 mark)

- 7 The Large Hadron Collider is designed to accelerate protons to very high energies for particle physics experiments. Very high energies are required to
 - A annihilate hadrons.
 - **B** collide hadrons.
 - C create particles with large mass.
 - **D** produce individual quarks.

(Total for Question = 1 mark)

- 8 A positive kaon (K^+) is a meson which includes a strange quark. Its structure could be
 - \square A u \overline{s}
 - B us
 - \square C $\overline{s}\overline{d}\overline{d}$
 - D usd

(Total for Question 1 mark)

9 The K^+ is likely to decay to

- $\square \qquad \mathbf{A} \ \pi^+ + \mu \ + \nu_{\mu}$
- $\blacksquare \quad \mathbf{B} \ \pi^+ + \pi^0$
- \square **C** $\pi^+ + \pi$
- $\square \quad \mathbf{D} \ \pi^0 + \mu \ + \nu_\mu$

(Total for Question 1 mark)

- **10** A pion could consist of
 - $\blacksquare \quad \mathbf{A} \quad \mathbf{u} \overline{\mathbf{d}}$
 - B ud
 - C uud
 - \square **D** uud

(Total for Question 1 mark)

- 11 Data at the back of the examination paper can be used with the formula $\Delta E = c^2 \Delta m$ to calculate
 - A the amount of energy in a proton.
 - **B** the mass of coal that produces 6 MJ of energy when burnt.
 - \square C the energy produced when an electron and a positron annihilate.
 - **D** the energy produced when two protons collide.

(Total for Question 1 mark)

- 12 Pions are the lightest mesons. A negative pion (π^{-}) has a mass of 2.48×10^{-28}
- kg. Which of the following is the mass of the π^- in MeV/c²?
 - $\blacksquare \ \mathbf{A} \quad 1.4 \times 10^8$
 - $\blacksquare \mathbf{B} \quad 1.4 \times 10^2$
 - \square C 4.7 × 10⁻⁷
 - **D** 3.6×10^{-24}

(Total for Question = 1 mark)